Airborne radar forward‐looking image enhancing algorithm based on generative adversarial networks
نویسندگان
چکیده
Radar forward-looking imaging is gaining significance in various applications like battlefield reconnaissance, target surveillance, and precision guidance. Although synthetic aperture radar techniques provide high azimuth resolution but faced limitations area due to the poor Doppler “left-right” ambiguity problem. Recently, generative adversarial networks have been extensively used for image motion blur removal. This letter proposes an end-to-end enhancing network using produce high-resolution images, improving efficiency, quality of imaging. Compared conventional methods such as deconvolution-based methods, this algorithm eliminates need design iterative processes observation matrix. Simulated real data validate that approach offers robust recovery better performance.
منابع مشابه
Enhancing Underwater Imagery using Generative Adversarial Networks
Autonomous underwater vehicles (AUVs) rely on a variety of sensors – acoustic, inertial and visual – for intelligent decision making. Due to its non-intrusive, passive nature, and high information content, vision is an attractive sensing modality, particularly at shallower depths. However, factors such as light refraction and absorption, suspended particles in the water, and color distortion af...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملSpectral Image Visualization Using Generative Adversarial Networks
Spectral images captured by satellites and radiotelescopes are analyzed to obtain information about geological compositions distributions, distant asters as well as undersea terrain. Spectral images usually contain tens to hundreds of continuous narrow spectral bands and are widely used in various fields. But the vast majority of those image signals are beyond the visible range, which calls for...
متن کاملGenerative Adversarial Networks for Image Steganography
Steganography is collection of methods to hide secret information (“payload”) within non-secret information (“container”). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics Letters
سال: 2023
ISSN: ['0013-5194', '1350-911X']
DOI: https://doi.org/10.1049/ell2.12878